MA5602 (Preliminary)

38 V Synchronous Buck Converter With CC/CV

* GENERAL DESCRIPTION

MA5602 is a wide input voltage, high efficiency Active CC step-down DC/DC converter that operates in either CV (Constant Output Voltage) mode or CC (Constant Output Current) mode. MA5602 provides up to 2.5 A output current at 200 kHz switching frequency. Current mode control provides fast transient response and cycle-by-cycle current limit.

An internal soft-start prevents inrush current at turn-on, This device, available in an SOP8L-EP(Exposed pad) package, provides a very compact solution with minimal external components.

* FEATURES

- Wide 8 V to 38 V Operating Input Range
- Integrated $140 \mathrm{~m} \Omega$ Power MOSFET Switches
- Output Adjustable from VFB(1.0V) to 6V
- Up to 93\% Efficiency
- Internal Soft-Start.
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 200KHz Frequency
- Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout

* APPLICATION CIRCUIT

MA5602 (Preliminary)

* PIN ASSIGNMENT

The package of MA5602 is SOP8L-EP(Exposed pad); the pin assignment is given by:

Name	Description
BS	Boot-Strap Pin. Supply high side gate driver. Decouple this pin to LX pin with 150hm + 0.1uF ceramic cap.
IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 8V to 38V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor.
SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load.
GND	Ground.
PAD	Ground (Connect to GND).
FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage.
COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop.
SEN+	The Current Sense Input (+) pin.
SEN-	The Current Sense Input (-) pin.

* RDER/MARKING INFORMATION

Order Information	Top Marking
$\begin{gathered} \text { MA5602XXX } \rightarrow \text { Packing } \\ \text { Package Type Alank: Tube } \\ \text { ES: SOP8L-EP } \end{gathered}$	

MA5602 (Preliminary)

* BLOCK DIAGRAM

* A BSOLUTE MAXIMUM RATINGS (at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +42	V
Switch Node Voltage	$\mathrm{V}_{\text {SW }}$	-0.3 to $\mathrm{VIN}_{\text {IN }}+0.3$	V
Boost Voltage	$\mathrm{V}_{\text {BS }}$	$\mathrm{VSW}-0.3$ to VSW +6	V
All Other Pins		-0.3 to +6	V
Lead Temperature		260	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Output Voltage	$\mathrm{V}_{\text {OUT }}$	VFB to 6	$\mathrm{~V}^{2}$
Ambient Operating Temperature		-40 to +85	${ }^{\circ} \mathrm{C}$
Thermal Resistance from Junction to case	$\theta_{\text {JC }}$	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to ambient	$\theta_{\text {JA }}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: θ_{JA} is measured with the PCB copper area of approximately $1 \mathrm{in}^{2}$ (Multi-layer). That need connect to exposed pad.

* ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Conditions	Min	Typ	Max	Units
Input Voltage Range			8	-	38	V
Quiescent Current	ICcQ	$\mathrm{V}_{\text {FB }}=1.05 \mathrm{~V}$	-	0.7	1.4	mA
Feedback Voltage	$V_{\text {FB }}$	$8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 38 \mathrm{~V}$	0.98	1.00	1.02	V
Feedback Overvoltage Threshold	OVP(FB)		-	1.1X	-	$V_{\text {FB }}$
High-Side Switch On Resistance (Note)	$\mathrm{RDS}(\mathrm{N}) 1$		-	150	-	$\mathrm{m} \Omega$
Low-Side Switch On Resistance (Note)	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$		-	140	-	$\mathrm{m} \Omega$
High-Side Switch Leakage Current		$\mathrm{V}_{\text {FB }}=1.05 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Upper Switch Current Limit		Minimum Duty Cycle	2.9	3.5	-	A
Lower Switch Current Limit		From Drain to Source	-	0.7	-	A
Oscillation Frequency	Fosc1		-	200	-	KHz
Short Circuit Oscillation Frequency	Fosc2	$\mathrm{V}_{\mathrm{FB}}=<0.5 \mathrm{~V}$	-	70	-	KHz
Maximum Duty Cycle	$\mathrm{D}_{\text {max }}$		-	90	-	\%
Minimum On Time (Note)	Ton(min)		-	220	-	ns
Sense Voltage	$\Delta \mathrm{V}_{\text {SEN }}$	($\mathrm{V}_{\text {SEN }+ \text {) }}$ - $\mathrm{V}_{\text {SEN }-}$	97	100	103	mV
VIN OVP Turn-Off Voltage		Input Voltage Rising	-	40	-	V
VIN OVP Hysteresis		Input Voltage Falling	-	6	-	V
Input Under Voltage Lockout Threshold	UVLO	$\mathrm{V}_{\text {IN }}$ Rising	6.5	7.0	7.5	V
Input Under Voltage Lockout Threshold Hysteresis	UVLO-Hys		-	800	-	mV
Soft-Start Period			-	3	-	ms
Thermal Shutdown	Tsd		-	150	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysterisis	$\mathrm{T}_{\text {SH }}$		-	30	-	${ }^{\circ} \mathrm{C}$

Note: Guaranteed by design.

* FUNCTION DESCRIPTIONS

The MA5602 is a synchronous rectified, current-mode, step-down regulator. It regulates input voltages from 8 V to 38 V down to an output voltage as low as $\mathrm{V}_{\text {FB }}$, and supplies up to 2.5 A of load current.

The MA5602 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal Tran conductance error amplifier.

The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS is needed to drive the high side gate. The boost capacitor is charged from the internal 5 V rail when SW is low.

When the MA5602 FB pin exceeds 10% of the nominal regulation voltage of $V_{F B}$, the over voltage comparator is tripped and the COMP pin is discharged to GND, forcing the high-side switch off.

MA5602 (Preliminary)

* PACKAGE OUTLINES

Symbol	Dimensions in Millimeters			Dimensions in Inches						
	Min.	Nom.	Max.	Min.	Nom.	Max.				
A	-	-	1.75	-	-	0.069				
A1	0	-	0.15	0	-	0.06				
A2	1.25	-	-	0.049	-	-				
C	0.1	0.2	0.25	0.0075	0.008	0.01				
D	4.7	4.9	5.1	0.185	0.193	0.2				
E	3.7	3.9	4.1	0.146	0.154	0.161				
H	5.8	6	6.2	0.228	0.236	0.244				
L	0.4	-	1.27	0.015	-	0.05				
b	0.31	0.41	0.51	0.012	0.016	0.02				
e	1.27 BSC									0.050 BSC
y	-	-	0.1	-	-	0.004				
X	-	2.34	3.33	-	0.092	0.131				
Y	-	2.34	2.54	-	0.092	0.10				
θ	0	-	80	00	-	80				

Mold flash shall not exceed 0.25 mm per side
JEDEC outline: MS-012 BA

