1.0A 1.5MHz Synchronous Buck Converter

* GENERAL DESCRIPTION

The MA5005 is a monolithic synchronous buck regulator with a built in internal power MOSFET. It achieves 1.0A continuous output current fix switching frequency with excellent load and line regulation.

Current mode operation provides fast transient response and eases of loop stabilization.

Fault condition protection includes cycle-by-cycle current limiting, output short circuit protection and thermal shutdown. In shutdown mode the regulator draws less than $1 \mu \mathrm{~A}$ of supply current. Internal soft-start minimizes the inrush supply current at initial startup.

The MA5005 requires a minimum number of readily available standard external components. It is available in SOT23-5L, TSOT23-5L and TDFN-6L package.

* FEATURES

- $\quad 2.5 \mathrm{~V}$ to 5.5 V input voltage range
- Up to 1.0A Output Current
- $300 / 200 \mathrm{~m} \Omega$ Internal Power MOSFET Switch
- Stable with Low ESR Output Ceramic Capacitors
- Up to 95\% Efficiency
- Less than $1 \mu \mathrm{~A}$ Shutdown Current
- $\quad 1.5 \mathrm{Mhz}$ Switching Frequency
- Thermal Shutdown Protection
- Current limit and short circuit protections.
- Output Adjustable from 0.6V to VIN
- Available in SOT23-5L, TSOT23-5L and TDFN-6L Pb-Free Package
- Build-in soft start function

* BLOCK DIAGRAM

* PIN ASSIGNMENT

The packages of MA5005 are SOT23-5L, TSOT23-5L and TDFN-6L; the pin assignment is given by:

Name	Description
VCC	VCC Input Pin
GND	Ground Pin.
FB	Feedback Pin.
EN	Chip Enable pin. Active high.
SW	Switching Pin
NC	NO Connect

MA5005

* ORDER/MARKING INFORMATION

Order Information (SOT, TSOT)	Top Marking (SOT, TSOT)
Order Information (TDFN)	Top Marking (TDFN)

* ABSOLUTE MAXIMUM RATINGS (at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Rating	Unit
VCC pin voltage		V_{N}	-0.3 to 7	V
SW pin voltage		Vsw	-0.7 to $\bigvee_{1 \times 1}+0.3$	V
EN, FB pins voltage			-0.3 to $\vee_{\mathbb{N}}+0.3$	V
Continuous Power Dissipation		PD	$\left(\mathrm{T}_{J}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\text {JA }}$	mW
Operating Junction Temperature		Top	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-65 to 150	${ }^{\circ} \mathrm{C}$
Thermal Resistance from Junction to case	TDFN	$\theta_{\text {jc }}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	SOT,TSOT		110	
Thermal Resistance from Junction to ambient	TDFN	$\theta_{\text {JA }}$	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	SOT,TSOT		250	

Note: θ_{JA} is measured with the PCB copper are (need connect to GND of the MA5005) of approximately $1 \mathrm{in}^{2}$ (Multi-layer).

MA5005

* ELECTRICAL CHARACTERISTICS
$\left(V_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=5 \mathrm{~V}\right.$, $\left.\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Conditions	Min	Typ	Max	Units
Input Voltage Range	VIN		2.5	-	5.5	V
Input UVLO	UVLO	lout=0A	1.8	2.2	2.5	V
Input OVLO	OVLO	lout=0A	-	6.0	-	V
Quiescent Current	Icco	$V_{\text {FB }}=1 \mathrm{~V}$	-	250	350	$\mu \mathrm{A}$
Shutdown Current	ISD	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$	-	0.1	1	$\mu \mathrm{A}$
FB Pin Voltage	$V_{\text {FB }}$		0.588	0.6	0.612	V
FB Pin Current(Note1)	$I_{\text {FB }}$		-	-	± 50	nA
Load Regulation		$0 \mathrm{~A}<\mathrm{louT}^{<1.0 \mathrm{~A}}$	-	0.6	-	\%
Line Regulation		$2.5 \mathrm{~V}<\mathrm{V}_{1 \times}<5.5 \mathrm{~V}$	-	0.3	-	\%/V
EN Pin Voltage High	$V_{\text {ENH }}$		1.5	-	-	V
EN Pin Voltage Low	$\mathrm{V}_{\text {ENL }}$		-	-	0.4	V
EN Pin Leakage Current		$\mathrm{V}_{\text {EN }}=3 \mathrm{~V}$	-	0.1	1	$\mu \mathrm{A}$
Switching Frequency	Fosc		1.1	1.5	1.9	MHz
Current Limit	CL		1.2	1.5	-	A
Switching Maximum Duty	Dmax		-	-	100	\%
Minimum Duty	Dmin		0	-	-	\%
P-Switch R ${ }_{\text {DS(ON) }}$	RDS(ON)-P		-	300	-	$\mathrm{m} \Omega$
N-Switch Ros(on) (Note1)	Rds(ON)-N		-	200	-	$\mathrm{m} \Omega$
Low Side Discharger			-	60	-	Ω
Thermal Shutdown	TsD		-	160	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Protection hysteresis	Tsh		-	30	-	${ }^{\circ} \mathrm{C}$

Note1: Guaranteed by design.

MA5005

* APPLICATION CIRCUIT

* FUNCTION DESCRIPTION

Normal Operation

The MA5005 uses a user adjustable frequency, current mode, synchronous step-down architecture with internal paver switch. During normal operation, the internal power switch is turned on each cycle when the oscillator sets the SR latch, and turned off when the comparator resets the SR latch. The peak inductor current at which comparator resets the SR latch is controlled by the output of error amplifier EA. While the high-side switch is off, the external schottky diode turns on until either the inductor current starts to reverse or the beginning of the next switching cycle.

Setting the Output Voltage

Application circuit item shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following equation:

$$
V_{\text {Out }}=V_{F B} \times(1+R 1 / R 2), V_{F B}=0.6 \mathrm{~V}, \mathrm{R} 2 \text { suggest } 60 \mathrm{k} \sim 300 \mathrm{k} \Omega
$$

Table 1 Resistor select for output voltage setting

$\mathrm{V}_{\text {OUT }}$	R2	R1
1.0 V	150 K	100 K
1.2 V	100 K	100 K
1.5 V	100 K	150 K
1.8 V	100 K	200 K
2.5 V	150 K	470 K
3.3 V	100 K	450 K

Dropout Operation

As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the high-side switch to remain on for more than one cycle until it reaches 100% duty cycle.

The output voltage is dropped from the input supply for the voltage which across the high-side switch.

Over Temperature Protection

In most applications the MA5005 does not dissipate much heat due to high efficiency. But, in applications where the MA5005 is running at high ambient temperature with low supply voltage and high duty cycles, such as in dropout, the heat dissipated may exceed the maximum junction temperature of the part. If the junction temperature reaches approximately $160^{\circ} \mathrm{C}$, the internal high-side power switch will be turned off and the LX node will become high impedance.

Over Current Protection

The MA5005 cycle-by-cycle limits the peak inductor current to protect embedded switch from damage. Hence the maximum output current (the average of inductor current) is also limited. In case the load increases, the inductor current is also increase. Whenever the current limit level is reached, the output voltage cannot be regulated and starting to drop.

Soft-Start

The MA5005 employs internal soft-start circuitry to reduce supply inrush current during startup conditions. When the device exits under-voltage lockout or shut-down mode, the soft-start circuitry will slowly ramp up the output voltage.

Short-circuit Protection

Short-circuit protection will activate once the feedback voltage falls below, and the operating frequency will be reducing normal switching frequency to reduce power delivered from input to output.

MA5005

* TYPICAL CHARACTERISTICS

MA5005

* Package Outlines

(1) SOT23-5L

DETAL A

Symbol	Dimensions in Millimeters		Dimensions in Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	1.05	-	1.35	0.041	-	0.053
A1	0.05	-	0.15	0.002	-	0.006
A2	1.00	1.10	1.20	0.039	0.043	0.047
b	0.30	-	0.50	0.012	-	0.020
C	0.08	-	0.22	0.003	-	0.009
D	2.80	2.90	3.00	0.110	0.114	0.118
E1	1.50	1.60	1.70	0.059	0.063	0.067
E	2.60	2.80	3.00	0.102	0.110	0.118
L	0.30	-	0.60	0.012	-	0.024
L1	0.50	0.60	0.70	0.020	0.024	0.028
e1	1.80	1.90	2.00	0.071	0.075	0.079
e	0.85	0.95	1.05	0.033	0.037	0.041
θ	0°	4°	8°	0°	4°	8°
$\theta 1$	5°	10°	15°	5°	10°	15°
日2	5°	10°	15°	5°	10°	15°

MA5005
(2) TDFN-6L ($\left.2^{*} 20.75 \mathrm{~mm}\right)$

(SIDE View)

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	0.7	0.75	0.8	0.028	0.03	0.031
A1	0	0.02	0.05	0	0.001	0.002
A3	0.203 REF.			0.008 REF.		
b	0.2	0.28	0.35	0.009	0.011	0.013
D	1.95	2	2.05	0.077	0.079	0.081
D2	1.35	1.5	1.65	0.055	0.059	0.063
E	1.95	2	2.05	0.077	0.079	0.081
E2	0.75	0.9	1.05	0.031	0.035	0.039
E	0.65 BSC.				0.026 BSC.	
L	0.2	0.3	0.4	0.008	0.012	0.016

MA5005
(3) TSOT23-5L

Symbol	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
A	-	-	1.10	-	-	0.043
A1	0.00	-	0.10	0	-	0.004
A2	0.70	0.90	1.00	0.028	0.035	0.039
b	0.30	0.40	0.50	0.012	0.016	0.020
C	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
E	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.50	1.60	1.70	0.059	0.063	0.067
e	0.95 BSC.			0.037 BSC.		
e1	1.90 BSC.			0.075 BSC.		
L	0.30	0.45	0.60	0.012	0.018	0.024
L1	0.60 REF.			0.024 REF.		
L2	0.25 BSC.			0.010 BSC.		
y	-	-	0.10	-	-	0.004
R	0.10	-	-	0.004	-	-
θ	$0{ }^{\circ}$	-	8°	0°	-	8°

JECED outline: MO-193 AB

